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Motivations

x

y

C

θ

P

P ′
P ′ = R(P,C , θ)(

x ′

y ′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)

Initial approximations for
floating-point units:

• reciprocal 1
x for division

• inverse square root 1√
x

for
square root

x

f (x)

0.5

1

1 2

1
x

1√
x

and many other functions: exp(x), log(x), arctan(x), cosh(x), . . .
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Radix-2 Representations of Values

• Fixed-point format (kQl):

xk xk−1 . . . x1 x0 x−1 x−2 . . . x−l+1 x−l

k integer bits l fractional bits

n = k + l bits

=
k∑

i=−l

xi 2
i = X

• Representation R:

X = (xk−1xk−2 . . . x1x0.x−1x−2 . . . xl−1xl )R

Examples:
I ()2 binary representation, xi ∈ {0, 1}

e.g. 3.125 = (11.001)2

I ( )bs borrow-save redundant representation xi ∈ {−1, 0, 1}, −1 = 1
e.g. 31 = (11111.0)2 = (100001.0)bs

I 1Q9 4Q12
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Error and Accuracy
Question: how many bits are correct ?

xt = (1.000 000 00)2 theoretical value

xc = (0.111 111 11)2 value in the circuit

|xt − xc| = (0.000 000 01)2 = 2−8

Error, ε: distance between 2 objects (e.g. ε = ||f (x)− p(x)||)

Accuracy, µ: (fractional) number of bits required to represent values with
an error ≤ ε

µ = − log2 |ε|

Notation: µ expressed in terms of correct or significant bits ([cb], [sb])

Example: error ε = 0.0000107 is equivalent to accuracy µ = 16.5 sb
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Function Evaluation Methods

• Table based approximations

HW: require tables, ± (and possibly very small ×cst)
very high throughput
large silicon area (limited to small accuracy)

• Shift and add algorithms (e.g. CORDIC)

HW: require ± and very small tables
small silicon area
scalable and flexible for multiple functions evaluation
long latency (T (n) = O(n))

• Polynomial or rational approximations

HW: require ±, × (possibly small tables for coefficients storage)
simple architecture
resource sharing for multiple functions evaluation
large silicon area due to multipliers
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Table Based Approximations

Bipartite method:

x1 x2 x3x =

T1 T2

+

≈ f (x)

Multipartite method:

x1 x2 x3 x4x =

T1 T2 T3

+

≈ f (x)

Reference:

F. de Dinechin and A. Tisserand, Multipartite Table Methods, IEEE Transactions

on Computers, March 2005, vol. 53, n. 3, pp. 319–330, DOI: 10.1109/TC.2005.54
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Shift and Add Algorithms

CORDIC: COordinate Rotation DIgital Computer (H. Briggs 1624, J.
Volder 1959 and S. Walther 1971), used for function approximation, DFT,
filters, linear algebra (syst. solving, SVD), DDFS. . .

xn+1 = xn −mdnyn2−σ(n)

yn+1 = yn + dnxn2−σ(n)

zn+1 = zn − wσ(n)

Some possible evaluation modes (depends on the configuration):
xn → K (x0cos z0 − y0sin z0)

xn → K ′(x1cosh z1 + y1sinh z0)

xn → K
√

x2
0 + y2

0


yn → y0 + x0z0

zn → z0 − arctan y0
x0

zn → z0 − y0
x0

zn → z1 − tanh−1 y1
x1

where m ∈ {0, 1}, dn ∈ {sign(zn),−sign(yn)},
wk ∈ {arctan(2−k ), 2−k , tanh−1(w−k )} are tabulated values and σ(n) ∈ {n, n − k}
where k is the largest integer s.t. 3k+1 + 2k − 1 ≤ 2n
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Polynomial Approximations
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Question: what is the best p?
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Accuracy, Degree and Evaluation Cost

Degree-d minimax approximation polynomials to sin(x) with x ∈ [a, b]:
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• higher accuracy =⇒ higher degree

• higher degree =⇒ more costly evaluation
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Polynomial Evaluation Schemes

scheme computations # ± # ×

direct p0 + p1x + p2x2 + p3x3 3 5

Horner p0 +
(
p1 + (p2 + p3x)x

)
x 3 3

Estrin p0 + p1x + (p2 + p3x)x2 3 4

Trade-off:

• direct scheme −→ high operation cost and smaller accuracy

• Horner scheme −→ smallest cost but sequential

• Estrin scheme −→ some internal parallelism

Question: what is the best evaluation scheme?
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Round-off Errors

Round-off errors occur during most of computations:

• due to the finite accuracy during the computations

• small for a single operation (fraction of the LSB)

• accumulation of such errors may be a problem in long computation
sequences

• need for a sufficient datapath width in order to limit round-off errors

Examples: 1/3 = 0.33333333 . . .→ 0.3333 or 0.3334 in 1Q104 format

+ ×

Question: what is the best datapath width?
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Rounding Modes and Correct Rounding
Notations:

• } is an operation ±,×,÷ . . .
• � is the active rounding mode (or quantization mode)

IEEE-754: 4(x) towards +∞ (up), ∇(x) towards −∞ (down), Z(x) towards 0,
N (x) towards the nearest

R representable values

midpoints

x

4(x)∇(x)

0
Z(x) N (x)

mathematical values

rmath = a}math b

finite precision values

rfinite = a}finite b

rfinite = �
(

a}math b
)
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Bounding Round-off Errors

Problem: it is very difficult to get tight bounds

Solutions:

• worst case: assume 1/2 LSB error for each operation
 simple but very pessimistic

• qualification: exhaustive or selected simulations
 simple but only validated bounds for small systems

• specific tools: formal accurate analysis (and proof)
 we use gappa developed by Guillaume Melquiond
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Gappa Overview

• developed by Guillaume Melquiond
• goal: formal verification of the correctness of numerical programs:
I software and hardware
I integer, floating-point and fixed-point arithmetic (±, ×, ÷,

√
)

• uses multiple-precision interval arithmetic, forward error analysis and
expression rewriting to bound mathematical expressions (rounded and
exact operators)

• generates a theorem and its proof which can be automatically checked
using a proof assistant (e.g. Coq or HOL Light)

• reports tight error bounds for given expressions in a given domain

• C++ code and free software licence (CeCILL ' GPL)

• publication: ACM Transactions on Mathematical Software, n. 1, vol.
37, 2010, pp: 2:1–20, doi: 10.1145/1644001.1644003

• source code and doc: http://gappa.gforge.inria.fr/
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Gappa Example
Degree-2 polynomial approximation to ex over [1/2, 1] and format 1Q9:

1 p0 = 571/512; p1 = 275/512; p2 = 545/512;
2

3 x = f i x e d<−9,dn>(Mx) ;
4

5 y1 f i x e d<−9,dn>= p2 * x + p1 ;
6 p f i x e d<−9,dn>= y1 * x + p0 ;
7

8Mp = ( p2 * Mx + p1 ) * Mx + p0 ;
9

10 {
11 Mx i n [ 0 . 5 , 1 ] /\ |Mp−Mf | i n [ 0 , 0 . 0 0 1385 ]
12−>
13 | p−Mf | i n ?
14 }

Gappa-0.14.0 result ([a, b], x{(≈ x)10, log2 x}, xby = x2y ):

Results for Mx in [0.5, 1] and |Mp - Mf| in [0, 0.001385]:

|p - Mf| in [0, 193518932894171697b-64 {0.0104907, 2^(-6.57475)}]
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Still Pending Questions

Question: what is the best (or a good) p?

mathematical p: minimax approximations

implemented p: simple selection of representable coefficients

links to other methods and tools

Question: what is the best (or a good) datapath width?

basic optimization method

better heuristics under development. . .

Question: what is the best (or a good) evaluation scheme?

Horner or specific scheme examples. . .

work still in progress. . .
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Minimax Polynomial Approximations

• approximation error εapp = ||f − p||∞ = maxa≤x≤b|f (x)− p(x)|

• minimax polynomial approximation to f over [a, b] is p∗ such that:

||f − p∗||∞ = minp∈Pd
||f − p||∞

• Pd set of polynomials with real coefficients and degree ≤ d

• p∗ computed using an algorithm from Remez (numerically
implemented in Maple, Matlab, sollya. . . )

Problems:

• p∗ coefficients in R =⇒ conversion to finite precision

• during p∗ evaluation, some round-off errors add up to εapp
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Example f (x) = 2x and x ∈ [0, 1]

x

f (x)

0 1

1

2
2x

d µ [sb] εapp

1 4.53 4.31× 10−2

2 8.65 2.48× 10−3

3 13.18 1.08× 10−4

4 18.04 3.71× 10−6

5 23.15 1.07× 10−7

p∗ ?p∗ = 0.956964333 + 1.000000000×p∗ = 1.002476056 + x × (0.651046780 + x × 0.344001106)
p∗ = 0.999892965 + x × (0.696457394 + x × (0.224338364 +
x × 0.079204240))
p∗ = 1.000003704 + x × (0.692966122 + x × (0.241638445 +
x × (0.051690358 + x × 0.013697664)))
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Finite Precision Coefficients Selection Problem

Example: f (x) = ex over [1/2, 1] with d = 2, the remez function from
sollya gives:

p∗ = 1.116019297 . . .+ 0.535470348 . . .× x + 1.065407185 . . .× x2

Question: what are “good” representable values for p0, p1 and p2?

Problem: p∗ is the best theoretical approximation to f (i.e. pi ∈ R)

Need: find good approximations with “machine-representable” coefficients

Above example with 1Q9 format (all values for domain [1/2, 1]):

• εapp = ||f − p∗||∞ ' 1.385× 10−3  ' 9.4 sb

• 571
512 + 137

256x + 545
512x2  8.1 sb (∀i use N (pi ))

• 571
512 + 275

512x + 545
512x2  9.3 sb (best selection)
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Basic Coefficient Selection Method

Idea: search among all the rounding modes for all the p∗i
• round up pi = 4(p∗i ), round down pi = 5(p∗i )

• 2 values per coeff. =⇒ total of 2d+1 values (but d is small)

• for each polynomial p evaluate εapp = ||f − p||∞, then select
polynomial(s) with the smallest εapp
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5(p2) 4(p2)

4(p1)

5(p2) 4(p2)

4(p0)

5(p1)

5(p2) 4(p2)

4(p1)

5(p2) 4(p2)

h
eig

h
t
=

d
+

1

εapp

Result: p(x) =
∑d

i=0 pi x
i where all pi are representable in target format
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Example for f (x) = 2x , x ∈ [0, 1] and d = 4

εapp(p∗)  18.04 sb

p εapp(p) p εapp(p)

(5,5,5,5,5) 12.00 (5,5,5,5,4) 13.00
(5,5,5,4,5) 13.00 (5,5,5,4,4) 14.03
(5,5,4,5,5) 13.00 (5,5,4,5,4) 14.55
(5,5,4,4,5) 14.99 (5,5,4,4,4) 13.00
(5,4,5,5,5) 13.00 (5,4,5,5,4) 16.13
(5,4,5,4,5) 17.12 (5,4,5,4,4) 13.00
(5,4,4,5,5) 15.71 (5,4,4,5,4) 13.00
(5,4,4,4,5) 13.00 (5,4,4,4,4) 12.00
(4,5,5,5,5) 13.00 (4,5,5,5,4) 13.00
(4,5,5,4,5) 13.00 (4,5,5,4,4) 13.00
(4,5,4,5,5) 13.00 (4,5,4,5,4) 13.00
(4,5,4,4,5) 12.99 (4,5,4,4,4) 12.00
(4,4,5,5,5) 12.99 (4,4,5,5,4) 12.98
(4,4,5,4,5) 12.91 (4,4,5,4,4) 12.00
(4,4,4,5,5) 12.79 (4,4,4,5,4) 12.00
(4,4,4,4,5) 12.00 (4,4,4,4,4) 11.41

p represented by (p0, p1, p2, p3, p4)

εapp [sb]
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Improved Coefficient Selection Methods

p0

5 4

p1

5
4
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Other selection methods:

• linear programming methods, e.g. meplib software
https://lipforge.ens-lyon.fr/projects/meplib/

• euclidean lattices reduction (LLL), e.g. sollya software
http://sollya.gforge.inria.fr/
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Method Summary

d = 1 (p∗, ε∗app) = minimax(f , a, b, d) d = d + 1

εapp(p∗) < µ ?

l = d− log2 |µ|e (p, εapp) = select(p, l) l = l + 1

εapp(p) < µ ?
l too large?

n′ = n εeval = gappa(p, n′) n′ = n′ + 1

εeval(p) < µ ?
n′ − n too large?

start

end

noyes

noyes

no

yes

yes

yes

d
selectio

n
p
selectio

n
n
′
selectio

n

n = k + l

εeval = g(εapp, εround-off)

A. Tisserand, CNRS. Optimizing Polynomial Approximations 24/1

https://lipforge.ens-lyon.fr/projects/meplib/
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Example: 2x over [0, 1] and µ ≤ 12 sb (1/2)

Let us try with d = 3 (max. theoretical accuracy 13.18 sb):

p∗(x) = 0.999892965 + 0.696457394x + 0.224338364x2 + 0.079204240x3

Coefficients (fractional part) size selection:

l 12 13 14 15 16

εapp 12.38 12.45 13.00 13.00 13.02
# polynomials 0 0 2 2 7

Coefficients selection: for n = k + l = 1 + 14 bits, we get:

(5,5,5,5) 11.41 (5,5,5,4) 12.00
(5,5,4,5) 12.00 (5,5,4,4) 12.84
(5,4,5,5) 12.00 (5,4,5,4) 13.00
(5,4,4,5) 13.00 (5,4,4,4) 12.36
(4,5,5,5) 12.00 (4,5,5,4) 12.25
(4,5,4,5) 12.23 (4,5,4,4) 12.23
(4,4,5,5) 12.13 (4,4,5,4) 12.12
(4,4,4,5) 12.05 (4,4,4,4) 11.64
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Example: 2x over [0, 1] and µ ≤ 12 sb (2/2)

Datapath size selection:

n′ 14 15 16 17 18 19 20

εeval direct 11.24 11.86 12.32 12.62 12.79 12.89 12.94

εeval Horner 11.32 11.93 12.36 12.65 12.81 12.90 12.95

Solution: d = 3, n = k + l = 1 + 14 and n′ = 16
Implementation results:

solution area period #cycles latency power

wo. tools 1.00 1.00 4 1.00 1.00

w. tools 0.83 0.82 3 0.61 0.68
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Example:
√
x over [1, 2] and µ ≤ 8 sb

Selection of coefficients leading to sparse recodings

p∗ = 1.00076383 + 0.48388463x − 0.071198745x2

p = 1 + (0.100001)2x − (0.0001001)2x2

replace × by a small number of ±

×

x

1 6 4 7
1

+

+ + − − −

p

solution area period #cycles latency power

wo. tools 1.00 1.00 2 1.00 1.00

w. tools 0.59 0.97 1 0.48 0.45
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Summary

accuracy

cost ≈ delay×area

pi selection

round-off errors

pi recoding
proposed method

Important: non-optimal solutions BUT very good ones in practice
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