Computer Arithmetic

A. Tisserand, CNRS. Optimizing Polynomial Approximations

Motivations

Optimizing Polynomial Approximations

for Function Evaluation

Arnaud Tisserand

CNRS

ARCAD Meeting, January 2023

and many other functions: $\exp(x)$, $\log(x)$, $\arctan(x)$, $\cosh(x)$, ...

A. Tisserand, CNRS. Optimizing Polynomial Approximations

Radix-2 Representations of Values

• Fixed-point format (kQI):

• Representation R:

$$X = (x_{k-1}x_{k-2} \dots x_1x_0 \dots x_{-1}x_{-2} \dots x_{l-1}x_l)_{\mathbb{R}}$$

Examples:

- ()₂ binary representation, x_i ∈ {0,1}
 e.g. 3.125 = (11.001)₂
- ()_{bs} borrow-save redundant representation $x_i \in \{-1, 0, 1\}, -1 = \overline{1}$ e.g. $31 = (11111.0)_2 = (10000\overline{1}.0)_{bs}$
- 1Q9 4Q12 4Q12

Error and Accuracy

Question: how many bits are correct ?

$$\begin{cases} x_{t} = (1.000\ 000\ 00)_{2} & theoretical \ value \\ x_{c} = (0.111\ 111\ 11)_{2} & value \ in \ the \ circuit \\ |x_{t} - x_{c}| = (0.000\ 000\ 01)_{2} = 2^{-8} \end{cases}$$

Error, ϵ : distance between 2 objects (e.g. $\epsilon = ||f(x) - p(x)||$)

Accuracy, $\mu:$ (fractional) number of bits required to represent values with an error $\leq \epsilon$

$$\mu = -\log_2 |\epsilon|$$

Notation: μ expressed in terms of correct or significant bits ([cb], [sb])

Example: error $\epsilon = 0.0000107$ is equivalent to accuracy $\mu = 16.5$ sb

Table Based Approximations

Reference:

F. de Dinechin and A. Tisserand, *Multipartite Table Methods*, IEEE Transactions on Computers, March 2005, vol. 53, n. 3, pp. 319–330, DOI: 10.1109/TC.2005.54

Function Evaluation Methods

• Table based approximations

HW: require tables, \pm (and possibly very small \times_{cst}) very high throughput large silicon area (limited to small accuracy)

• Shift and add algorithms (e.g. CORDIC)

- HW: require \pm and very small tables
- 😌 small silicon area

Scalable and flexible for multiple functions evaluation

Solution latency (T(n) = O(n))

• Polynomial or rational approximations

- HW: require \pm , \times (possibly small tables for coefficients storage) \bigcirc simple architecture
 - Service sharing for multiple functions evaluation
 - large silicon area due to multipliers

A. Tisserand, CNRS. Optimizing Polynomial Approximations

Shift and Add Algorithms

CORDIC: COordinate Rotation DIgital Computer (H. Briggs 1624, J. Volder 1959 and S. Walther 1971), used for function approximation, DFT, filters, linear algebra (syst. solving, SVD), DDFS...

$$\begin{cases} x_{n+1} = x_n - md_n y_n 2^{-\sigma(n)} \\ y_{n+1} = y_n + d_n x_n 2^{-\sigma(n)} \\ z_{n+1} = z_n - w_{\sigma(n)} \end{cases}$$

Some possible evaluation modes (depends on the configuration):

$$\begin{cases} x_n \rightarrow K(x_0 \cos z_0 - y_0 \sin z_0) \\ x_n \rightarrow K'(x_1 \cosh z_1 + y_1 \sinh z_0) \\ x_n \rightarrow K\sqrt{x_0^2 + y_0^2} \end{cases} \begin{cases} y_n \rightarrow y_0 + x_0 z_0 \\ z_n \rightarrow z_0 - \arctan \frac{y_0}{x_0} \\ z_n \rightarrow z_0 - \frac{y_0}{x_0} \\ z_n \rightarrow z_1 - \tanh^{-1} \frac{y_1}{x_1} \end{cases}$$

where $m \in \{0,1\}$, $d_n \in \{\operatorname{sign}(z_n), -\operatorname{sign}(y_n)\}$,

 $w_k \in \{\arctan(2^{-k}), 2^{-k}, \tanh^{-1}(w^{-k})\}$ are tabulated values and $\sigma(n) \in \{n, n-k\}$ where k is the largest integer s.t. $3^{k+1} + 2k - 1 \le 2n$

Accuracy, Degree and Evaluation Cost

Degree-*d* minimax approximation polynomials to sin(x) with $x \in [a, b]$:

higher accuracy ⇒ higher degree
higher degree ⇒ more costly evaluation

A. Tisserand, CNRS. Optimizing Polynomial Approximations

10/1

Polynomial Evaluation Schemes

scheme	computations	# ±	# ×
direct	$p_0 + p_1 x + p_2 x^2 + p_3 x^3$	3	5
Horner	$p_0 + (p_1 + (p_2 + p_3 x)x)x$	3	3
Estrin	$p_0 + p_1 x + (p_2 + p_3 x) x^2$	3	4

Trade-off:

- ${\: \bullet \:}$ direct scheme \longrightarrow high operation cost and smaller accuracy
- ${\ \bullet \ }$ Horner scheme \longrightarrow smallest cost but sequential
- $\bullet \ \ \mathsf{Estrin} \ \mathsf{scheme} \longrightarrow \mathsf{some internal parallelism}$

Question: what is the best evaluation scheme?

Round-off Errors

Round-off errors occur during most of computations:

- due to the finite accuracy during the computations
- small for a single operation (fraction of the LSB)
- accumulation of such errors may be a problem in long computation sequences
- need for a sufficient datapath width in order to limit round-off errors

Examples: $1/3=0.33333333\ldots \rightarrow 0.3333$ or 0.3334 in $1\mathrm{Q}_{10}4$ format

Question: what is the best datapath width?

Rounding Modes and Correct Rounding

Notations:

- \odot is an operation $\pm, \times, \div \dots$
- ◊ is the active rounding mode (or quantization mode)
 IEEE-754: △(x) towards +∞ (up), ∇(x) towards -∞ (down), Z(x) towards 0, N(x) towards the nearest

A. Tisserand, CNRS. Optimizing Polynomial Approximations

13/1

Problem: it is very difficult to get tight bounds

Solutions:

- qualification: exhaustive or selected simulations
 → simple but only validated bounds for small systems
- specific tools: formal accurate analysis (and proof)
 → we use gappa developed by Guillaume Melquiond

A. Tisserand, CNRS. Optimizing Polynomial Approximations

Gappa Overview

- developed by Guillaume Melquiond
- goal: formal verification of the correctness of numerical programs:
 - software and hardware
 - \blacktriangleright integer, floating-point and fixed-point arithmetic (±, ×, ÷, $\surd)$
- uses multiple-precision interval arithmetic, forward error analysis and expression rewriting to bound mathematical expressions (rounded and exact operators)
- generates a theorem and its proof which can be automatically checked using a proof assistant (e.g. Coq or HOL Light)
- reports tight error bounds for given expressions in a given domain
- C++ code and free software licence (CeCILL \simeq GPL)
- publication: ACM Transactions on Mathematical Software, n. 1, vol. 37, 2010, pp: 2:1–20, doi: 10.1145/1644001.1644003
- source code and doc: http://gappa.gforge.inria.fr/

Gappa Example

Degree-2 polynomial approximation to e^x over [1/2, 1] and format 1Q9:

```
p1 = 275/512;
_{1} p0 = 571/512;
                                        p2 = 545/512;
3 \times = fixed < -9, dn > (Mx);
5 v1 fixed < -9, dn >= p2 * x + p1;
     fixed < -9, dn >= y1 * x + p0;
6 p
_{8}Mp = (p2 * Mx + p1) * Mx + p0;
9
10 {
      Mx in [0.5,1] /\ |Mp-Mf| in [0,0.001385]
11
12->
      |p-Mf| in ?
13
14 }
```

Gappa-0.14.0 result ([a, b], $x\{(\approx x)_{10}, \log_2 x\}, xby = x2^y\}$): Results for Mx in [0.5, 1] and |Mp - Mf| in [0, 0.001385]: |p - Mf| in [0, 193518932894171697b-64 {0.0104907, 2^(-6.57475)}]

Still Pending Questions

Question: what is the best (or a good) p?
mathematical p: minimax approximations
implemented p: simple selection of representable coefficients
links to other methods and tools
Question: what is the best (or a good) datapath width?
basic optimization method
better heuristics under development...
Question: what is the best (or a good) evaluation scheme?
Horner or specific scheme examples...
work still in progress...

A. Tisserand, CNRS. Optimizing Polynomial Approximations

17/1

Minimax Polynomial Approximations

- approximation error $\epsilon_{app} = ||f p||_{\infty} = \max_{a \le x \le b} |f(x) p(x)|$
- minimax polynomial approximation to f over [a, b] is p^* such that:

 $||f - p^*||_{\infty} = \min_{p \in \mathcal{P}_d} ||f - p||_{\infty}$

- \mathcal{P}_d set of polynomials with real coefficients and degree $\leq d$
- p* computed using an algorithm from Remez (numerically implemented in Maple, Matlab, sollya...)

Problems:

- p^* coefficients in $\mathbb{R} \Longrightarrow$ conversion to finite precision
- during p^* evaluation, some round-off errors add up to ϵ_{app}

A. Tisserand, CNRS. Optimizing Polynomial Approximations

18/1

Example $f(x) = 2^x$ and $x \in [0, 1]$

Finite Precision Coefficients Selection Problem

Example: $f(x) = e^x$ over [1/2, 1] with d = 2, the remez function from sollya gives:

 $p^* = 1.116019297 \ldots + 0.535470348 \ldots \times x + 1.065407185 \ldots \times x^2$

Question: what are "good" representable values for p_0 , p_1 and p_2 ?

Problem: p^* is the best theoretical approximation to f (i.e. $p_i \in \mathbb{R}$) **Need**: find good approximations with "machine-representable" coefficients Above example with 1Q9 format (all values for domain [1/2, 1]):

• $\epsilon_{app} = ||f - p^*||_{\infty} \simeq 1.385 \times 10^{-3} \quad \rightsquigarrow \quad \simeq 9.4 \text{ sb}$ • $\frac{571}{512} + \frac{137}{256}x + \frac{545}{512}x^2 \quad \rightsquigarrow \quad 8.1 \text{ sb} \quad (\forall i \text{ use } \mathcal{N}(p_i))$ • $\frac{571}{512} + \frac{275}{512}x + \frac{545}{512}x^2 \quad \rightsquigarrow \quad 9.3 \text{ sb} \quad (\text{best selection})$

Basic Coefficient Selection Method

Idea: search among all the rounding modes for all the p_i^*

- round up $p_i = \triangle(p_i^*)$, round down $p_i = \nabla(p_i^*)$
- 2 values per coeff. \implies total of 2^{d+1} values (but d is small)
- for each polynomial p evaluate $\epsilon_{app} = ||f p||_{\infty}$, then select polynomial(s) with the smallest ϵ_{app}

Result: $p(x) = \sum_{i=0}^{d} p_i x^i$ where all p_i are representable in target format A. Tisserand, CNRS. Optimizing Polynomial Approximations

$\epsilon_{ m app}({\it p}^*) \rightsquigarrow$	18.04 st)		$\epsilon_{\mathrm{app}}\left[sb ight]$	
р	$\epsilon_{ m app}(p)$	р	$\epsilon_{ m app}(p)$	20 🗍	
$(\bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown)$	12.00	$(\bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangleup)$	13.00		d =
$(\bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown, \Delta, \bigtriangledown)$	13.00	$(\bigtriangledown, \bigtriangledown, \bigtriangledown, \triangle, \triangle)$	14.03	18 -	
$(\bigtriangledown, \bigtriangledown, \bigtriangleup, \bigtriangleup, \bigtriangledown, \bigtriangledown)$	13.00	$(\bigtriangledown, \bigtriangledown, \bigtriangleup, \bigtriangleup, \bigtriangleup, \bigtriangleup)$	14.55	16	
$(\bigtriangledown, \bigtriangledown, \triangle, \triangle, \bigtriangledown)$	14.99	$(\bigtriangledown, \bigtriangledown, \triangle, \triangle, \triangle)$	13.00	10 T	
$(\bigtriangledown, \triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown)$	13.00	$(\bigtriangledown, \triangle, \bigtriangledown, \bigtriangledown, \triangle, \triangle)$	16.13	14 +	d =
$(\bigtriangledown, \triangle, \bigtriangledown, \triangle, \bigtriangledown)$	17.12	$(\bigtriangledown, \triangle, \bigtriangledown, \Delta, \triangle)$	13.00		
$(\bigtriangledown, \triangle, \triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown)$	15.71	$(\bigtriangledown, \triangle, \Delta, \bigtriangledown, \triangle)$	13.00	12 +	
$(\bigtriangledown, \triangle, \triangle, \triangle, \bigtriangledown)$	13.00	$(\bigtriangledown, \triangle, \Delta, \Delta, \Delta)$	12.00		
$(\Delta, \bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown)$	13.00	$(\triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown, \triangle)$	13.00	10 +	d =
$(\Delta, \bigtriangledown, \bigtriangledown, \bigtriangledown, \Delta, \bigtriangledown)$	13.00	$(\triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown, \triangle, \triangle)$	13.00		
$(\triangle, \bigtriangledown, \triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown)$	13.00	$(\triangle, \bigtriangledown, \triangle, \bigtriangledown, \triangle)$	13.00	° T	
$(\Delta, \bigtriangledown, \Delta, \Delta, \bigtriangledown)$	12.99	$(\triangle, \bigtriangledown, \triangle, \triangle, \triangle)$	12.00	6 -	
$(\triangle, \triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown)$	12.99	$(\triangle, \triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown, \triangle)$	12.98	Ū	d =
$(\Delta, \Delta, \bigtriangledown, \bigtriangledown, \Delta, \bigtriangledown)$	12.91	$(\triangle, \triangle, \bigtriangledown, \triangle, \triangle)$	12.00	4	
$(\triangle, \triangle, \triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown)$	12.79	$(\triangle, \triangle, \triangle, \bigtriangledown, \triangle)$	12.00		
$(\triangle, \triangle, \triangle, \triangle, \bigtriangledown)$	12.00	$(\triangle, \triangle, \triangle, \triangle, \triangle)$	11.41	2 +	
v represented by	(p_0, p_1, p_2)	$, p_3, p_4)$		ο⊥	

A. Tisserand, CNRS. Optimizing Polynomial Approximations

Improved Coefficient Selection Methods

Other selection methods:

- linear programming methods, e.g. meplib software https://lipforge.ens-lyon.fr/projects/meplib/
- euclidean lattices reduction (LLL), e.g. sollya software http://sollya.gforge.inria.fr/

21/1

Example: 2^{x} over [0,1] and $\mu \leq 12$ sb (1/2)

Let us try with d = 3 (max. theoretical accuracy 13.18 sb): $p^*(x) = 0.999892965 + 0.696457394x + 0.224338364x^2 + 0.079204240x^3$

Coefficients (fractional part) size selection:

1	12	13	14	15	16
$\epsilon_{ m app}$	12.38	12.45	13.00	13.00	13.02
<pre># polynomials</pre>	0	0	2	2	7

Coefficients selection: for n = k + l = 1 + 14 bits, we get:

$(\bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown)$	11.41	$(\bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown, \Delta)$	12.00
$(\bigtriangledown, \bigtriangledown, \bigtriangleup, \bigtriangleup, \bigtriangledown)$	12.00	$(\bigtriangledown, \bigtriangledown, \triangle, \triangle)$	12.84
$(\bigtriangledown, \triangle, \bigtriangledown, \bigtriangledown)$	12.00	$(\bigtriangledown, \triangle, \bigtriangledown, \triangle)$	13.00
$(\bigtriangledown, \triangle, \triangle, \bigtriangledown)$	13.00	$(\bigtriangledown, \triangle, \Delta, \Delta)$	12.36
$(\triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown)$	12.00	$(\triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown, \triangle)$	12.25
$(\triangle, \bigtriangledown, \triangle, \bigtriangledown)$	12.23	$(\triangle, \bigtriangledown, \triangle, \triangle)$	12.23
$(\triangle, \triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown)$	12.13	$(\triangle, \triangle, \bigtriangledown, \triangle)$	12.12
$(\triangle, \triangle, \triangle, \bigtriangledown)$	12.05	$(\triangle, \triangle, \triangle, \triangle)$	11.64

A. Tisserand, CNRS. Optimizing Polynomial Approximations

25/1

Example: 2^{x} over [0,1] and $\mu \leq 12$ sb (2/2)

Datapath size selection:

n′	14	15	16	17	18	19	20
$\epsilon_{ m eval}$ direct	11.24	11.86	12.32	12.62	12.79	12.89	12.94
$\epsilon_{\rm eval}$ Horner	11.32	11.93	12.36	12.65	12.81	12.90	12.95

Solution: d = 3, n = k + l = 1 + 14 and n' = 16Implementation results:

solution	area	period	#cycles	latency	power
wo. tools	1.00	1.00	4	1.00	1.00
w. tools	0.83	0.82	3	0.61	0.68

A. Tisserand, CNRS. Optimizing Polynomial Approximations

Example: \sqrt{x} over [1, 2] and $\mu \leq 8$ sb

Selection of coefficients leading to sparse recodings

 $p^* = 1.00076383 + 0.48388463x - 0.071198745x^2$

 $p = 1 + (0.10000\overline{1})_2 x - (0.0001001)_2 x^2$

replace \times by a small number of \pm

solution	area	period	#cycles	latency	power
wo. tools	1.00	1.00	2	1.00	1.00
w. tools	0.59	0.97	1	0.48	0.45

Summary

Important: non-optimal solutions BUT very good ones in practice