Optimizing Polynomial Approximations

for Function Evaluation

Arnaud Tisserand

CNRS

ARCAD Meeting, January 2023
cirs

A. Tisserand CNRS. Optimizing Polynomial Approximations

Radix-2 Representations of Values

- Fixed-point format (kQ/):

- Representation R:

$$
X=\left(x_{k-1} x_{k-2} \ldots x_{1} x_{0} \cdot x_{-1} x_{-2} \ldots x_{l-1} x_{l}\right)_{\mathrm{R}}
$$

Examples:

- ()$_{2}$ binary representation, $x_{i} \in\{0,1\}$ e.g. $3.125=(11.001)_{2}$
- () bs borrow-save redundant representation $x_{i} \in\{-1,0,1\},-1=\overline{1}$ e.g. $31=(11111.0)_{2}=(10000 \overline{1} .0)_{\mathrm{bs}}$
- 1Q9 $\square \square \square|\square| \square \mid \square \square \square$

4Q12 $\square|\square!\square| \square||\square| \square| \square \square$

Error and Accuracy

Question: how many bits are correct ?

$$
\left\{\begin{array}{lll}
x_{\mathrm{t}} & =(1.00000000)_{2} & \text { theoretical value } \\
x_{\mathrm{c}} & =(0.11111111)_{2} & \text { value in the circuit } \\
\left|x_{\mathrm{t}}-x_{\mathrm{c}}\right| & =(0.00000001)_{2}=2^{-8} &
\end{array}\right.
$$

Error, ϵ : distance between 2 objects (e.g. $\epsilon=\|f(x)-p(x)\|$)
Accuracy, μ : (fractional) number of bits required to represent values with an error $\leq \epsilon$

$$
\mu=-\log _{2}|\epsilon|
$$

Notation: μ expressed in terms of correct or significant bits ([cb], [sb])
Example: error $\epsilon=0.0000107$ is equivalent to accuracy $\mu=16.5 \mathrm{sb}$

A. Tisserand, CNRS. Optimizing Polynomial Approximations

Table Based Approximations

Bipartite method:

$\approx f(x)$

Multipartite method:

$\approx f(x)$

Reference:
F. de Dinechin and A. Tisserand, Multipartite Table Methods, IEEE Transactions on Computers, March 2005, vol. 53, n. 3, pp. 319-330, DOI: 10.1109/TC.2005.54

- Table based approximations

HW: require tables, \pm (and possibly very small $\times_{\text {cst }}$)
© () very high throughput
(2) large silicon area (limited to small accuracy)

- Shift and add algorithms (e.g. CORDIC)

HW: require \pm and very small tables
© small silicon area
(ㅇ) scalable and flexible for multiple functions evaluation
(2) long latency $(T(n)=O(n))$

- Polynomial or rational approximations

HW: require \pm, \times (possibly small tables for coefficients storage)
(3) simple architecture
(-) resource sharing for multiple functions evaluation
(2) large silicon area due to multipliers
A. Tisserand, CNRS. Optimizing Polynomial Approximations

Shift and Add Algorithms

CORDIC: COordinate Rotation DIgital Computer (H. Briggs 1624, J. Volder 1959 and S. Walther 1971), used for function approximation, DFT, filters, linear algebra (syst. solving, SVD), DDFS. .

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}-m d_{n} y_{n} 2^{-\sigma(n)} \\
y_{n+1}=y_{n}+d_{n} x_{n} 2^{-\sigma(n)} \\
z_{n+1}=z_{n}-w_{\sigma(n)}
\end{array}\right.
$$

Some possible evaluation modes (depends on the configuration):

$$
\left\{\begin{array} { l }
{ x _ { n } \rightarrow K (x _ { 0 } \operatorname { c o s } z _ { 0 } - y _ { 0 } \operatorname { s i n } z _ { 0 }) } \\
{ x _ { n } \rightarrow K ^ { \prime } (x _ { 1 } \operatorname { c o s h } z _ { 1 } + y _ { 1 } \operatorname { s i n h } z _ { 0 }) } \\
{ x _ { n } \rightarrow K \sqrt { x _ { 0 } ^ { 2 } + y _ { 0 } ^ { 2 } } }
\end{array} \quad \left\{\begin{array}{lll}
y_{n} & \rightarrow y_{0}+x_{0} z_{0} \\
z_{n} & \rightarrow & z_{0}-\arctan \frac{y_{0}}{x_{0}} \\
z_{n} & \rightarrow & z_{0}-\frac{y_{0}}{x_{0}} \\
z_{n} & \rightarrow & z_{1}-\tanh ^{-1} \frac{y_{1}}{x_{1}}
\end{array}\right.\right.
$$

where $m \in\{0,1\}, d_{n} \in\left\{\operatorname{sign}\left(z_{n}\right),-\operatorname{sign}\left(y_{n}\right)\right\}$,
$w_{k} \in\left\{\arctan \left(2^{-k}\right), 2^{-k}, \tanh ^{-1}\left(w^{-k}\right)\right\}$ are tabulated values and $\sigma(n) \in\{n, n-k\}$ where k is the largest integer s.t. $3^{k+1}+2 k-1 \leq 2 n$

Polynomial Approximations

$p(x) f(-x) f(x)$
x argument
[a,b] domain
f function
p polynomial

Question: what is the best p ?
$\epsilon(x)=f(x)-p(x) \quad \epsilon$ approx. error
$\epsilon(x) \leq \epsilon_{\text {target }} \quad \epsilon_{\text {target }}$ maximum allowed error
A. Tisserand, CNRS. Optimizing Polynomial Approximations

Polynomial Evaluation Schemes

scheme	computations	$\# \pm$	$\# \times$
direct	$p_{0}+p_{1} x+p_{2} x^{2}+p_{3} x^{3}$	3	5
Horner	$p_{0}+\left(p_{1}+\left(p_{2}+p_{3} x\right) x\right) x$	3	3
Estrin	$p_{0}+p_{1} x+\left(p_{2}+p_{3} x\right) x^{2}$	3	4

Trade-off:

- direct scheme \longrightarrow high operation cost and smaller accuracy
- Horner scheme \longrightarrow smallest cost but sequential
- Estrin scheme \longrightarrow some internal parallelism

Question: what is the best evaluation scheme?

Accuracy, Degree and Evaluation Cost

Degree- d minimax approximation polynomials to $\sin (x)$ with $x \in[a, b]$:

- higher accuracy \Longrightarrow higher degree
- higher degree \Longrightarrow more costly evaluation
\qquad

Round-off Errors

Round-off errors occur during most of computations:

- due to the finite accuracy during the computations
- small for a single operation (fraction of the LSB)
- accumulation of such errors may be a problem in long computation sequences
- need for a sufficient datapath width in order to limit round-off errors

Examples: $1 / 3=0.33333333 \ldots \rightarrow 0.3333$ or 0.3334 in $1 \mathrm{Q}_{10} 4$ format

Question: what is the best datapath width?

Rounding Modes and Correct Rounding

Notations:

- © is an operation $\pm, \times, \div \ldots$
- \diamond is the active rounding mode (or quantization mode) IEEE-754: $\Delta(x)$ towards $+\infty$ (up), $\nabla(x)$ towards $-\infty$ (down), $\mathcal{Z}(x)$ towards 0 , $\mathcal{N}(x)$ towards the nearest

representable values midpoints

A. Tisserand, CNRS. Optimizing Polynomial Approximations

Gappa Overview

- developed by Guillaume Melquiond
- goal: formal verification of the correctness of numerical programs:
- software and hardware
- integer, floating-point and fixed-point arithmetic $(\pm, \times, \div \sqrt{ })$
- uses multiple-precision interval arithmetic, forward error analysis and expression rewriting to bound mathematical expressions (rounded and exact operators)
- generates a theorem and its proof which can be automatically checked using a proof assistant (e.g. Coq or HOL Light)
- reports tight error bounds for given expressions in a given domain
- $\mathrm{C}++$ code and free software licence (CeCILL $\simeq G P L$)
- publication: ACM Transactions on Mathematical Software, n. 1, vol. 37, 2010, pp: 2:1-20, doi: 10.1145/1644001.1644003
- source code and doc: http://gappa.gforge.inria.fr/

Gappa Example

Degree-2 polynomial approximation to e^{x} over $[1 / 2,1]$ and format 1Q9:

```
1 p0 = 571/512; }\quad\textrm{p}1=275/512; p2 = 545/512;
3x = fixed< - 9,dn> (Mx);
5y1 fixed<-9,dn>= p2 * x + p1;
6p fixed<-9,dn>= y1 * x + p0
7
8Mp = (p2 * Mx + p1) * Mx + p0;
9
10 {
11 Mx in [0.5,1] /\ |Mp-Mf in [0,0.001385]
12-> |p-Mf| in ?
14}
```

Gappa-0.14.0 result $\left([a, b], \quad x\left\{(\approx x)_{10}, \log _{2} x\right\}, \quad x b y=x 2^{y}\right)$: Results for $M x$ in [0.5, 1] and $|M p-M f|$ in [0, 0.001385]: |p - Mf| in [0, 193518932894171697b-64 \{0.0104907, 2~(-6.57475)\}]

Still Pending Questions

Question: what is the best (or a good) p ?
\rightarrow mathematical p : minimax approximations
\rightarrow implemented p : simple selection of representable coefficients
links to other methods and tools
Question: what is the best (or a good) datapath width?
\rightarrow basic optimization method
\longrightarrow better heuristics under development. .

Question: what is the best (or a good) evaluation scheme?
\rightarrow Horner or specific scheme examples...
\rightarrow work still in progress...

Example $f(x)=2^{x}$ and $x \in[0,1]$

Minimax Polynomial Approximations

- approximation error $\epsilon_{\text {app }}=\|f-p\|_{\infty}=\max _{a \leq x \leq b}|f(x)-p(x)|$
- minimax polynomial approximation to f over $[a, b]$ is p^{*} such that:

$$
\left\|f-p^{*}\right\|_{\infty}=\min _{p \in \mathcal{P}_{d}}\|f-p\|_{\infty}
$$

- \mathcal{P}_{d} set of polynomials with real coefficients and degree $\leq d$
- p^{*} computed using an algorithm from Remez (numerically implemented in Maple, Matlab, sollya. . .)

Problems:

- p^{*} coefficients in $\mathbb{R} \Longrightarrow$ conversion to finite precision
- during p^{*} evaluation, some round-off errors add up to $\epsilon_{\text {app }}$

Finite Precision Coefficients Selection Problem

Example: $f(x)=e^{x}$ over $[1 / 2,1]$ with $d=2$, the remez function from sollya gives:

$$
p^{*}=1.116019297 \ldots+0.535470348 \ldots \times x+1.065407185 \ldots \times x^{2}
$$

Question: what are "good" representable values for p_{0}, p_{1} and p_{2} ?

Problem: p^{*} is the best theoretical approximation to f (i.e. $p_{i} \in \mathbb{R}$)
Need: find good approximations with "machine-representable" coefficients Above example with 1 Q9 format (all values for domain [1/2, 1]):

- $\epsilon_{\text {app }}=\left\|f-p^{*}\right\|_{\infty} \simeq 1.385 \times 10^{-3} \rightsquigarrow \simeq 9.4 \mathrm{sb}$
- $\frac{571}{512}+\frac{137}{256} x+\frac{545}{512} x^{2} \rightsquigarrow 8.1 \mathrm{sb} \quad\left(\forall i\right.$ use $\left.\mathcal{N}\left(p_{i}\right)\right)$
- $\frac{571}{512}+\frac{275}{512} x+\frac{545}{512} x^{2} \rightsquigarrow 9.3 \mathrm{sb} \quad$ (best selection)

Basic Coefficient Selection Method

Idea: search among all the rounding modes for all the p_{i}^{*}

- round up $p_{i}=\triangle\left(p_{i}^{*}\right)$, round down $p_{i}=\nabla\left(p_{i}^{*}\right)$
- 2 values per coeff. \Longrightarrow total of 2^{d+1} values (but d is small)
- for each polynomial p evaluate $\epsilon_{\text {app }}=\|f-p\|_{\infty}$, then select polynomial(s) with the smallest $\epsilon_{\text {app }}$

Result: $p(x)=\sum_{i=0}^{d} p_{i} x^{i}$ where all p_{i} are representable in target format A. Tisserand, CNRS. Optimizing Polynomial Approximations

Improved Coefficient Selection Methods

Other selection methods:

- linear programming methods, e.g. meplib software
https://lipforge.ens-lyon.fr/projects/meplib/
- euclidean lattices reduction (LLL), e.g. sollya software
http://sollya.gforge.inria.fr/

$\epsilon_{\text {app }}\left(p^{*}\right) \rightsquigarrow$	18.04 sb		
p	$\epsilon_{\text {app }}(p)$	p	$\epsilon_{\text {app }}(p)$
$(\nabla, \nabla, \nabla, \nabla, \nabla)$	12.00	$(\nabla, \nabla, \nabla, \nabla, \Delta)$	13.00
$(\nabla, \nabla, \nabla, \triangle, \nabla)$	13.00	$(\nabla, \nabla, \nabla, \triangle, \triangle$)	14.03
$(\nabla, \nabla, \Delta, \nabla, \nabla)$	13.00	$(\nabla, \nabla, \Delta, \nabla, \triangle)$	14.55
$(\nabla, \nabla, \Delta, \Delta, \nabla)$	14.99	$(\nabla, \nabla, \Delta, \triangle, \Delta$)	13.00
$(\nabla, \triangle, \nabla, \nabla, \nabla)$	13.00	$(\nabla, \triangle, \nabla, \nabla, \triangle)$	16.13
$(\nabla, \triangle, \nabla, \triangle, \nabla)$	17.12	$(\nabla, \triangle, \nabla, \triangle, \triangle$)	13.00
$(\nabla, \triangle, \Delta, \nabla, \nabla)$	15.71	$(\nabla, \triangle, \triangle, \nabla, \triangle)$	13.00
$(\nabla, \triangle, \Delta, \Delta, \nabla)$	13.00	$(\nabla, \triangle, \Delta, \Delta, \triangle$)	12.00
$(\triangle, \nabla, \nabla, \nabla, \nabla)$	13.00	$(\triangle, \nabla, \nabla, \nabla, \triangle)$	13.00
$(\triangle, \nabla, \nabla, \triangle, \nabla)$	13.00	$(\triangle, \nabla, \nabla, \triangle, \triangle$)	13.00
$(\triangle, \nabla, \Delta, \nabla, \nabla)$	13.00	$(\triangle, \nabla, \Delta, \nabla, \triangle)$	13.00
$(\triangle, \nabla, \triangle, \Delta, \nabla)$	12.99	$(\triangle, \nabla, \Delta, \triangle, \triangle)$	12.00
$(\triangle, \triangle, \nabla, \nabla, \nabla)$	12.99	$(\triangle, \triangle, \nabla, \nabla, \triangle)$	12.98
$(\triangle, \triangle, \nabla, \triangle, \nabla)$	12.91	$(\triangle, \triangle, \nabla, \triangle, \triangle)$	12.00
$(\triangle, \triangle, \triangle, \nabla, \nabla)$	12.79	$(\triangle, \triangle, \triangle, \nabla, \triangle)$	12.00
$(\triangle, \triangle, \Delta, \triangle, \nabla)$	12.00	$(\triangle, \triangle, \Delta, \triangle, \triangle)$	11.41

p represented by $\left(p_{0}, p_{1}, p_{2}, p_{3}, p_{4}\right)$
A. Tisserand CNRS. Optimizing Polynomial Approximations

22/1

A. Tisserand, CNRS. Optimizing Polynomial Approximations

$$
\text { Example: } 2^{x} \text { over }[0,1] \text { and } \mu \leq 12 \text { sb }(1 / 2)
$$

$$
\text { Example: } 2^{x} \text { over }[0,1] \text { and } \mu \leq 12 \mathrm{sb}(2 / 2)
$$

Let us try with $d=3$ (max. theoretical accuracy 13.18 sb): $p^{*}(x)=0.999892965+0.696457394 x+0.224338364 x^{2}+0.079204240 x^{3}$

Coefficients (fractional part) size selection:

l	12	13	14	15	16
$\epsilon_{\text {app }}$	12.38	12.45	13.00	13.00	13.02
$\#$ polynomials	0	0	2	2	7

Coefficients selection: for $n=k+I=1+14$ bits, we get:

$(\nabla, \nabla, \nabla, \nabla)$	11.41	$(\nabla, \nabla, \nabla, \Delta)$	12.00
$(\nabla, \nabla, \triangle, \nabla)$	12.00	$(\nabla, \nabla, \triangle, \triangle$)	12.84
$(\nabla, \triangle, \nabla, \nabla)$	12.00	$(\nabla, \Delta, \nabla, \triangle$)	13.00
$(\nabla, \triangle, \triangle, \nabla)$	13.00	$(\nabla, \Delta, \triangle, \Delta$)	12.36
$(\triangle, \nabla, \nabla, \nabla)$	12.00	$(\triangle, \nabla, \nabla, \triangle)$	12.25
$(\triangle, \nabla, \triangle, \nabla)$	12.23	$(\triangle, \nabla, \triangle, \triangle)$	12.23
$(\triangle, \triangle, \nabla, \nabla)$	12.13	$(\triangle, \Delta, \nabla, \Delta)$	12.12
$(\triangle, \Delta, \triangle, \nabla)$	12.05	$(\triangle, \triangle, \triangle, \triangle)$	11.64

Example: \sqrt{x} over [1, 2] and $\mu \leq 8$ sb

Selection of coefficients leading to sparse recodings
$p^{*}=1.00076383+0.48388463 x-0.071198745 x^{2}$
$p=1+(0.10000 \overline{1})_{2} x-(0.0001001)_{2} x^{2}$
replace \times by a small number of \pm

solution	area	period	\#cycles	latency	power
wo. tools	1.00	1.00	2	1.00	1.00
w. tools	0.59	0.97	1	0.48	0.45

