
Low-Power Arithmetic Operators

Arnaud Tisserand

CNRS, IRISA laboratory, CAIRN research team

ECOFAC 2014
Lorient, ENSIBS / UBS
May 19th – 23th, 2014

Summary

Part I

Introduction

Motivations
Power Sources

Part II

Number systems

Basic Number Systems
Exotic Number Systems

Part III

Basic operations (over inte-
gers)

Basic Addition
Fast Addition
Basic Multiplication
Fast Multiplication

Part IV

More advanced operations

Division (square root)
Elementary Functions

Part V

Conclusion & references

Conclusion
References
Good Books

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 2/104

Part I

Introduction

Motivations

Power Sources

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 3/104

Electromigration
• high current density movement of atoms in a conductor
• mean time to failure (MTTF) of a wire, Black’s equation:

MTTF = A× J−n × e
Ea
kT

A section, J current density, n ≈ 2 scale factor (cst), Ea activation energy (cst for a

material), k Boltzmann’s constant, T temperature

• decreases IC reliability (permanent and intermittent failures)

e

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 4/104

ITRS 2009: Failure Rate Evolution

Source: http://public.itrs.net/Links/2009ITRS/Home2009.htm

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 5/104

Electromagnetic Interferences (EMI)

Electromagnetic emissions from a device or system (the culprit or attacker)
that interfere with the normal operation of another device or system (the
victim)

time

current

thermography 80C51 MCU by Philips

synchronous (left), asynchronous (right)

Electromagnetic compatibility (EMC):

• ability to avoid introducing intolerable electromagnetic disturbance

• circuit specific design rules

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 6/104

Cooling
Problems due to temperature:
• performance decreases with temperature

25 oC → 105 oC 30 % performance reduction
• reliability decreases with temperature

IC temperature > 125 oC faults and characteristics damage

Solutions:
• reduce power consumption

• cool circuits (air, water,...)

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 7/104

Cooling in Data Centers

• cooling is a significant challenge

• < 50 % power for electronic equipments (30–40 % in some cases)

• problem: keeping the hardware cool and humidified

Source: J. Cho, T. Lim, B. S. Kim. Measurements and predictions of the air distribution systems

in high compute density (Internet) data centers. Energy and Buildings, vol. 41, pp. 1107-1115,

2009

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 8/104

http://public.itrs.net/Links/2009ITRS/Home2009.htm

Power Consumption and Production in France (GW)

h0 2 4 6 8 10 12 14 16 18 20 22 24

GW

0

10

20

30

40

50

60

70

80

90

Jan. 5th, consumption
Jan. 5th, total production

Jan. 5th, nuclear prod.

Jan. 5th, coal prod.
Jan. 5th, fuel oil prod.

Jan. 5th, hydroelectric prod.

Jan. 7th, consumption

Sep. 22th, consumption
Sep. 20th, consumption

date nuclear coal fuel oil hydroelectric total
Tue. 2009-01-05 20h 57.5 6.8 2.2 14.2 80.9
Sun. 2009-09-20 20h 39.1 2.0 0.0 3.9 45.1
Tue. 2009-09-22 20h 42.5 4.8 0.0 4.3 51.7

Source: RTE (Réseau de transport d’électricité) http://www.rte-france.com/

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 9/104

Another Good Reason for Reducing Power Consumption

Idées Noires. Franquin. p. 10, Fluide Glacial, ISBN 2-85815-042-7

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 10/104

MOS Transistor: N and P transistors

MOS = metal oxide semiconductor

N transistors are made of:

• bulk (Si), P-type doping

• drain and source, N-type
doping

• insulator

• gate or grid z y

x

L

W

P

N N

dra
in

so
urc

e
gate

bulk

insulator

In N-type doping area, the majority carriers are electrons (holes in a P-type
area)

P transistor: bulk is N while source and drain are P areas

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 11/104

Fast Circuit Design: Basic Ideas

• VDD ↗ =⇒ speed↗ but limited by the technology

• Transistor size :
I W ↗ =⇒ speed↗ GOOD

I L↗ =⇒ speed↘ BAD

I but W ↗ =⇒ C ↗ =⇒ speed↘

Transistor Sizing

• Topology

• Logic optimizations

• Place and route optimizations

• Algorithms, data coding. . .

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 12/104

http://www.rte-france.com/

Fanout

The gate delay (change output state) depends
on the output load. Fanout measures this load
as the number of inputs of gate connected to
the output (normalized w.r.t. an inverter)

FO = 4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

D
el

ay
 [n

s]

FO

INV X1 (R)
INV X1 (F)
INV X4 (R)
INV X4 (F)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
el

ay
 [n

s]

FO

NAND2 (R)
NAND2 (F)
NAND3 (R)
NAND3 (F)
NAND4 (R)
NAND4 (F)

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 13/104

Power Consumption: Basic Definitions

Instantaneous power:

P(t) = iDD(t) VDD

Energy over some time interval T:

E =

∫ T

0
iDD(t) VDD dt

Average power over interval T:

Pavg =
E

T
=

1

T

∫ T

0
iDD(t) VDD dt

VDD

i DD

cir
cu

it

Units:
• current A
• voltage V
• power W
• energy J or Wh

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 14/104

Power Consumption: Components

Power dissipation in CMOS circuits comes from 2 main components:

• static dissipation:
I sub-threshold conduction through OFF transistors
I leakage current through P-N junctions
I tunneling current through gate oxide
I . . .

• dynamic dissipation:
I charging and discharging of load capacitances (useful + parasitic)
I short-circuit current

Ptotal = Pstatic + Pdynamic

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 15/104

Short-Circuit Current in CMOS Gates

Occurs when both N and P transistors are ON while the input switches

P

N

In Out

t

t

V

I
I

In

SC
sc

Solution : short transition (crisp edges)

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 16/104

Charging and Discharging Load Capacitances

There are capacitances everywhere in the circuit: transistor gate, routing,
parasitics. . .

CMOS
gate gates

routing

parasitic

Solutions:

• design small circuits (small transistor, short wires, technology
shrinking)

• reduce the activity (algorithms, data coding, sleep mode)

• reduce VDD (without lowering speed)

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 17/104

Transitions

There are 2 kinds of transitions:

• useful transitions (data switching)

• redundant or parasitic transitions (imperfections)

a=1

b=1

c

a

b

c

s

a

b

s

y y

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 18/104

Simple Power Consumption Model

Average dynamic power dissipation (no leakage, no short circuit):

P = α× C × f × V 2
DD

where

• α is the activity factor

• C is the average switched capacitance (at each cycle)

• f is the circuit frequency

• VDD is the supply voltage

Remark: the gate delay is d = γ × C×VDD
(VDD−VT)2 ≈ 1

VDD

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 19/104

Part II

Number systems

Basic Number Systems

Exotic Number Systems

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 20/104

Positional Number System(s)

X =
n−1∑

i=−m

xi β
i = (xn−1xn−2 · · · x1x0 . x−1x−2 · · · x−m)

• radix β (usually a power of 2)

• digits xi (∈ N) in the digit set D
• rank or position i , weight βi

• n integer digits, m fractional digits

Examples:

• β = 10,D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• β = 2,D = {0, 1}
• carry save: β = 2,Dcs = {0, 1, 2}
• borrow save: β = 2,Dbs = {−1, 0, 1}
• signed digits: β > 2,Dsd,α,β = {−α, . . . , α} with 2α + 1 ≥ β
• theoretical systems: β = 1+

√
5

2 , β = 1 + i . . .

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 21/104

Radix-2 Signed Integers

• sign and magnitude (absolute value)

A = (saan−2 . . . a1a0) = (−1)sa ×
n−2∑
i=0

ai 2
i

• 2’s complement

A = (an−1an−2 . . . a1a0) = −an−12n−1 +
n−2∑
i=0

ai 2
i

• biased (usually B = 2n−1 − 1)

A = Amath + B

• . . .

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 22/104

Signed Integers

−8
−7
−6
−5
−4
−3
−2
−1
0
1
2
3
4
5
6
7
8

0111
0110
0101
0100
0011
0010
0001
0000
1001
1010
1011
1100
1101
1110
1111

1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

biased
(B=7)

2’s complementinteger

representations

sign/magnitude

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 23/104

Fixed-Point Representations

Widely used in DSPs and digital integrated circuits for higher speed, lower
silicon area and power consumption compared to floating point

081623

ranksMSB LSB

2 2 2 2 2 2 2 2

22 2 2 2 2 2 2 2 2 2 2 2 22
−2 −5−1 −3 −4 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15

22 2 2 2 2 2 2 2 2 2 2 2 2 22
−2 −5−1 −3 −4 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15 −16

89101112131415

2
0

2 2 2 2 2 2 22
01234567

2 2 2 2 2 2 22
01234567

22 2 2 2 2 2 2 2 2 2 2 2 22
−2 −5−1 −3 −4 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15

2
−16

1Q15

Q16

N16 or Z16

8Q16

s

s

s

s

Typical fixed-point formats: 16, 24, 32 and 48 bits

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 24/104

Floating-Point Representation(s)

Radix-β floating-point representation of x :

• sign sx , 1-bit encoding: 0⇒ x > 0 and 1⇒ x < 0

• exponent ex ∈ N on k digits and emin ≤ ex ≤ emax

• mantissa mx on n + 1 digits

• encoding:

x = (−1)sx ×mx × βex

mx = x0 . x1 x2 x3 · · · xn

xi ∈ {0, 1, . . . , β − 1}

For accuracy purpose, the mantissa must be normalized (x0 6= 0)

Then mx ∈ [1, β[and a specific encoding is required for the number 0

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 25/104

IEEE-754: basic formats
Radix β = 2, the first bit of the normalized mantissa is always a “1”
(non-stored implicit bit)

number of bits
format total sign exponent mantissa

double precision 64 1 11 52 + 1

simple precision 32 1 8 23 + 1

LSBMSB ranks

double precision

single precision

0816243240485663

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 26/104

Logarithmic Number System (LNS)

Representation of x :
(sign of x , fixed-point approximation of log2 x)

LNS operations:

log2(a× b) = log2 a + log2 b

log2(a÷ b) = log2 a− log2 b

log2(a± b) = log2 a + log2(1± 2log2 b−log2 a)

log2(aq) = q × log2 a

where the functions log2(1 + 2x) and log2(1− 2x) are approximated (tables
or polynomials)

Applications in digital signal processing and digital control

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 27/104

Part III

Basic operations (over integers)

Basic Addition

Fast Addition

Basic Multiplication

Fast Multiplication

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 28/104

Basic Cells for Addition

Useful circuit element in computer arithmetic: counter

A (m, k)-counter is a cell that counts the number of 1 on its m inputs
(result expressed as a k-bit integer)

m−1∑
i=0

ai =
k−1∑
j=0

sj 2
j

...

...

a a a a01m−1 m−2

s sk−1 0

(m,k)

Standard counters:

• half-adder or HA is a (2,2)-counter

• full-adder or FA is a (3,2)-counter

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 29/104

FA Cell

FA

b

s

a d

c

a b d c s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Arithmetic equation:

2c + s = a + b + d

Logic equation:

s = a⊕ b ⊕ d

c = ab + ad + bd

 0

 1

 2

 3

 1990 1992 1994 1996 1998 2000 2002 2004

#a
rt

ic
le

s

Year

Articles about FA in IEEE Journals

There many implementations of
the FA cell

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 30/104

FA Implementations
b

HA

a

s

d

c

0 1

s

a b d

c

HA

s

a b

a

b

b

a

a b

a b

b

a

a

b

ba

r s

28 T

d

d

d

d

d
c

majority sum mod 2

a

s

20 T

b
d

c

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 31/104

Optimized FA Cell

10-transistor solution1 (some output signals are weak signals):

A

B

S

C

D

A B D C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0w 1

0 1 1 1 0

1 0 0 0w 1

1 0 1 1w 0

1 1 0 1 0

1 1 1 1w 1w

1H. T. Bui, Y. Wang et Y. Jiang. Design and analysis of low-power 10-transistor
full adders using novel XOR–XNOR gates. IEEE Trans. CaS, jan. 2002.

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 32/104

Carry Ripple Adder (CRA)

Very simple architecture: n FA cells connected in series

s s s s s s

rrrrrr

5 5 4 4 3 3 2 2 1 1 0 0

05 4 3 2 1

012345s6

ba

FA

ba

FA

ba

FA

ba

FA

ba

FA

ba

FA

complexity

delay O(n)

area O(n)

Warning: Sometimes a CRA is also called Carry Propagate Adder (CPA),
but CPA also means a non-redundant adder (that propagates)

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 33/104

Useless Activity in a Carry Ripple Adder

stable

activity

FA FA FA FA FA FA

V

V

CLK

t

t

cycle i

cycle i+1

1 1 0 0 1 1 0 0 1 1 0 0

110101010101

0 1 0 1 00

0

1
0
1
0
1
0 0

0
1
0
1
0 1

0
1
0
0
0 0

0
0
0
1
0 1

0
0
0
0
0 0

0
0
0
0
0

cycle i

cycle i+1
CLK

Theoretical models (equiprobable and uniform distribution of inputs):

• worst case n2/2 transitions

• average 3n/2 transitions and only n/2 useful

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 34/104

Subtraction
Using 2’s complement representation:

A−B = A+(−B)

Implementation:

B + B = 111 . . . 111︸ ︷︷ ︸
n bits

= −2n−1 +
n−2∑
i=0

2i = −1

⇒ −B = B + 1

5 5 4 4 3 3 2 2 1 1 0 0

s s s s s s4 35 2 1 0

A/S
0 +
1 −

fanout

a b a b a b a b a b a b

FA FA FA FA FA FA

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 35/104

Sign Extension

Required for the addition of different size operands in 2’s complement

extension

9a 8a 7a 6a 5a 4a 3a 1a2a

5b 4b 3b 2b 1b 0b5b5b5b5b

0a

Warning:

• fanout

• order in case of multiple additions

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 36/104

Representation(s) of Numbers and Power Consumption

Impact of the representation of numbers:

• operator speed

• circuit area

• useful and useless activity

cycle value 2’s complement tc2 sign/magnitude tsm

0 0 0000000000000000 0 0000000000000000 0
1 1 0000000000000001 1 0000000000000001 1
2 -1 1111111111111111 15 1000000000000001 1
3 8 0000000000001000 15 0000000000001000 3
4 -27 1111111111100101 15 1000000000011011 4
5 27 0000000000011011 15 0000000000011011 1

total 61 10

• sign/magnitude (absolute value):

A = (saan−2 . . . a1a0) = (−1)sa ×
n−2∑
i=0

ai 2
i

• 2’s complement:

A = (an−1an−2 . . . a1a0) = −an−12n−1 +

n−2∑
i=0

ai 2
i

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 37/104

Carry-Select Adder

Idea: computation of the higher half part for the 2 possible input carries (0
and 1) and selection when the output carry from lower half part is known

sn

0

1

sH

aL bL

bHaH

sL

0 1 1 0

lower part

higher part

Recursive version −→ O(log n) delay but. . .

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 38/104

Carry-Select Adder: Fanout Problem

0 10 10 1

a b

0

1

a b

0

1

a b

0

1

a b3 3 2 2 1 1 0 0

0 1 0 1

0 10 1

0 1 0 1

sssss 124 3 0

FA

FA

FAFA

FAFA

FA

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 39/104

Carry Skip Adder

Idea: split in blocks, fast detection of the block propagation in each block
(all ranks of the block propagate the block input carry)

PPP

ai:j bi:j

si:j

cicj+1

0

1

0

1

0

1

Questions:

• delay with uniform block size? analytical models

• delay with non-uniform block size? heuristics (papers)

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 40/104

Carry Look-ahead Adder

Idea: compute all carries as fast as possible (instead of propagating them)

At rank i , the input carry ci is 1 in the following cases:

• rank i − 1 generates a carry
↪→ gi−1 = 1

• rank i − 1 propagates a carry generated at rank i − 2
↪→ pi−1 = gi−2 = 1

• ranks i − 1 and i − 2 propagate a carry generated at rank i − 3
↪→ pi−1 = pi−2 = gi−3 = 1

...

• ranks i − 1 to 0 propagate the adder input carry c0 (set to 1)
↪→ pi−1 = pi−2 = . . . = p1 = p0 = c0 = 1

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 41/104

All carries can be computed using the relation (ci = gi−1 + ci−1pi−1):

ci = gi−1 + pi−1gi−2 + pi−1pi−2gi−3 + . . .+ pi−1 · · · p1g0 + pi−1 · · · p0c0

CLA architecture: parallel evaluation of

• (gi , pi) for all i

• carries ci for all i using the above equation

• sums using si = ai ⊕ bi ⊕ ci = pi ⊕ ci

1 1

s s s ss

n−1 n−1 n−2 n−2 0 0

0

0

0

1

1

1

n−1 n−1

n−1

n−1

n−2 n−2

n−2

n−2

1 0

n

n

a b a b a b a b

PG PG PG PG

p p p p

c c

c

gggg

c
c

icomputation of the c ’s

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 42/104

Carry Look-ahead Adder: 4-Bit Example

c1 = g0 + p0c0

c2 = g1 + p1g0 + p1p0c0

c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0

c4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0

00112233

24 3 1

0

gpgpgpgp

cccc

c

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 43/104

Parallel-Prefix Problems

The n outputs (yn−1, yn−2,· · · , y0) are computed using the n inputs (xn−1,
xn−2,· · · , x0) and the associative operator �:

y0 = x0

y1 = x1� x0

y2 = x2� x1� x0

...

yn−1 = xn−1� xn−2� · · · � x1� x0

x x x x x x x x

y y y y y y y y

x x

y y

9

9

8

8

7 6

6

5

5

4 3

3

2

2

1

1 0

0

7 4

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 44/104

Parallel-Prefix Addition: Standard Architectures

0

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

carry ripple

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

4

3

2

1

Sklansky

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

4

3

2

1

5

6

Brent−Kung

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4

0

2

1

3

Kogge−Stone

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

2

1

3

Han−Carlson

4

5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 45/104

Comparison of Adders

Source: PhD R. Zimmermann [11]

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 46/104

Redundant or Constant Time Adders

To speed-up the addition, one solution consists in “saving” the carries and
using them (this makes sense only in case of multiple additions)

In 1961, Avizienis suggested to represent numbers in radix β with digits in
{−α,−α + 1, . . . , 0, . . . , α− 1, α} instead of {0, 1, 2, . . . , β − 1} with
α ≤ β − 1

Using this representation, if 2α+ 1 > β some numbers have several possible
representation at the bit level. For instance, the value 2345 (in the standard
representation) can be represented in radix 10 with digits in
{−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5} by the values 2345, 235(-5) or
24(-5)(-5)

Such a representation is said redundant

In a redundant number system there is constant-time addition algorithm
(without carry propagation) where all computations are done in parallel

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 47/104

Carry-Save Adder

In carry-save, the number A is represented in radix 2 using digits
ai ∈ {0, 1, 2} coded by 2 bits such that ai = ai ,c + ai ,s where ai ,c ∈ {0, 1}
and ai ,s ∈ {0, 1}

A =
n−1∑
i=0

ai 2
i =

n−1∑
i=0

(ai ,c + ai ,s)2i

0

0

b2 b0a0b1a1a2b3a3

s4 s3 s2 s1 s0

FA FA FA FA

FA FAFAFA

01122334

3 3 3 2 2 2 1 1 1 0 0 0

01122334

Carry-save addition: delay of 2 FA cells (T = 0(1))

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 48/104

Carry-Save Trees

Example with 3 inputs: A, B and C
ca b c a b c a b c a b c a b a b c0 0011122333444555 2

s5 s4 s3 s2 s1 s0s6

FAFAFAFAFAFA

0112233456 5 4
0 0

Carry-save reduction tree: n(h) non-redundant inputs can be reduced by a
h-level carry-save tree where n(h) = b3n(h − 1)/2c and n(0) = 2

h 1 2 3 4 5 6 7 8 9 10 11

n(h) 3 4 6 9 13 19 28 42 63 94 141

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 49/104

Borrow-Save Addition
In borrow-save, the number A is represented in radix 2 using digits
ai ∈ {−1, 0, 1} coded by 2 bits such that ai = a+

i − a−i where a+
i ∈ {0, 1}

and a−i ∈ {0, 1}

A =
n−1∑
i=0

ai 2
i =

n−1∑
i=0

(a+
i − a−i)2i

0

0

a3 b3 a2 b2 a1 b1 a0 b0a b b b ba a a3 3 2 2 1 1 0 0

s4 s3 s2 s1 s0s s s s s4 3 2 1 0

PPM PPM

PPM PPM PPM PPM

PPMPPM

+ + − − − − − − − −+ + + + + +

+ + + + +− − − − −

4 3 3 2 2 1 1 0

3 3 3 2 2 2 1 1 1 0 0 0

01122334

Borrow-save addition: delay of 2 PPM cells (T = 0(1))
A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 50/104

Shift-And-Add Multiplication: Implementation

SHL10

setreset clk A 0 B

ai
Reg SP

P

Reg

complexity

delay O(n)

area O(n)

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 51/104

Shift-And-Add Multiplication: High-Radix Method

Idea: use high-radix digits for the multiplier

SHL10

0 1 0 1

SHR

clkreset set

Reg

P

0

B

2B

Reg SP

Reg SP

A

a

a2i+1

2i

3B

Problem: multiple generation
A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 52/104

Booth Recoding

In 1951, Booth proposed to increase the number of 0s in the multiplier
using the digit set {−1 = 1, 0, 1}

Recoding based on the identity:
2i+k + 2i+k−1 + 2i+k−2 + · · ·+ 2i = 2i+k+1 − 2i

Example: the integer 60 is represented by 00111100 = 01000100

The recoding replaces strings of 1s by a representation with more 0s

But, in some cases, this basic method leads to more 1 (or 1)!

Example: the value 01010101 is recoded to 11111111

=⇒ modified Booth’s recoding

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 53/104

Modified Booth’s Recoding
Idea: do not recode isolated 1 but only strings of 1

a7 a6 a5 a4 a3 a2 a1 a0

y7 y6 5y 4y y3 y2 y1 y0

0=a−1

ai ai−1 ai−2 yi yi−1 meaning operation

0 0 0 0 0 string of 0s +0
0 0 1 0 1 end of a string of 1s +B
0 1 0 0 1 isolated 1 +B
0 1 1 1 0 end of a string of 1s +2B
1 0 0 1 0 beginning of a string of 1s −2B
1 0 1 1 1 isolated 0 −B
1 1 0 0 1 beginning of a string of 1s −B
1 1 1 0 0 middle of a string of 1s +0

Improvement: leads to a n-product with bn/2c+ 1 additions and shifts at
most

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 54/104

Modified Booth Multiplier

0

0

0 B 2B

add/sous

Recodage
SHL

clk setreset

SHR

Reg

P

B

Reg SP spécial

A

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 55/104

2’s Complement Product

If A and B are represented using 2’s complement, then some partial
products have a negative weight

b2b4
b3

a2a3a4 a0

b0b1

a1

b4a0 b3a0 b2a0 b1a0 b0a0

b4a1 b3a1 b2a1 b1a1 b0a1

b4a2 b3a2 b2a2 b1a2 b0a2

b4a3 b3a3 b2a3 b1a3 b0a3

b4a0 b3a0 b2a0 b1a0 b0a0

b4a1 b3a1 b2a1 b1a1 b0a1

b4a2 b3a2 b2a2 b1a2 b0a2

b4a3 b3a3 b2a3 b1a3 b0a3

b4a4 b3a4 b2a4 b1a4 b0a4

b4a4 b3a4 b2a4 b1a4 b0a4

1 1

Modified Baugh−Wooley

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 56/104

Tree Multipliers

1. Partial products generation ai bj

(with or without recoding)
↪→ delay in O(1) (fanout ai ,bj

O(log n))

2. Sum of the partial products
using a carry-save reduction tree
↪→ delay in O(log n)

3. Assimilation of the carries using
a fast adder
↪→ delay in O(log n)

2n bits

B

A

a bi j

P

P (carry−save)

n bits

4n bits

2n bits

n bits

reduction

PP generation

Multiplication delay O(log n), area O(n2)

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 57/104

Partial Product Generation: Booth-2
0

0

0

LSB

MSB

m
u

lt
ip

lie
r

ss

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

1

1

1

1

1

1

s s

LSBMSB

A

2A

MSB

LSB

multiplicand

partial products

m
u

lt
ip

lie
r

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 58/104

Partial Product Generation: Booth-3
0

0

0

LSB

MSB

m
u

lt
ip

lie
r

s1

s

s

s1

s1

s11

1

1

sss

s

s

s

s

s s

LSB

MSB

A

2A

4A

3A

b bjbj+2

m
u

lt
ip

lie
r

3b j+1j+2

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 59/104

Booth’s Recoding Benefit

Booth-2 case:

• Speed: 1 or 2 levels removed from the reduction tree but this is
balanced by the recoding step

• Area: true benefit (30%), recoding cells limit the fanout problem and
their implementation is efficient in CMOS

Booth-3 case:
It is rarely used because of the very complex recoding and partial product

cells

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 60/104

Partial Products Addition: Reduction Trees

Goal: compute the addition of the n/2 + 1 partial products in carry-save

Several reduction trees can be used:

• Trees based on FA cells:
I Wallace trees
I Dadda trees
I fast reduction trees

• Trees based on “4 to 2” cells

• Trees based on counters or compressors

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 61/104

Wallace Trees

Wallace trees2 are p-input counters (dlog2pe outputs)

A Wallace tree with 2p+1 − 1 inputs can be built based on 2p − 1-input
Wallace trees (a 3-input Wallace tree is a FA)

W3

W3

W3

i

ii+1

i+1
0

ii i i i

i+1i+2

5W

W3

W3 = FA
aLaH

bH bL

bLaL

bLaH

bHaL

bHaH

bLaH

bLaLbHaH

bHaL

W3

W3 W5 W7
W5

W3

2C.S. Wallace. A suggestion for a fast multiplier. IEEE Transactions on Computers,
Feb. 1964.

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 62/104

Dadda Trees

Idea: minimal reduction at each level of the tree (just enough to reach the
next level in n(h) = b3n(h − 1)/2c with n(0) = 2)

h 1 2 3 4 5 6 7 8 9 10 11

n(h) 3 4 6 9 13 19 28 42 63 94 141

8 FA + 4 HA + 1 ADD(8) 9 FA + 3 HA + 1 ADD(8)

Dadda Standard

Area benefit on large
multipliers. Example:
n = 12 bits ⇒ 11%
less gates compared to
a Wallace tree

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 63/104

Placement and Routing Problems at the Gate Level

What is the best topology?

OSZM 4to2

Example: 14-bit reduction

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 64/104

Final Addition in Multipliers
The final addition or assimilation of the carries is performed using a fast
adder

Based on the relative arrival time of the partial products, some (small)
optimizations can be done: use of several adder types depending on the
rank region

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64 72 80 88 96 104

R
ed

uc
tio

n
D

el
ay

 [d
(X

O
R

)]

Rank

region 1region 2region 3
RCACLACseA

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 65/104

Power Consumption in Fast Multipliers

 0

 10

 20

 30

 40

 50

 60

 70

PP gen. reduc. assim. PP gen. reduc assim.
 0

 10

 20

 30

 40

 50

 60

 70

R
el

at
iv

e
po

w
er

 c
on

su
m

pt
io

n
[%

]

R
el

at
iv

e
de

la
y

[%
]

16%

67%

17% 15%

54%

31%

power delay

• 30% to 70% of redundant transitions (useless)

• place and route steps based on the internal arrival time

• add a pipeline stage

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 66/104

MAC and FMA

MAC: multiply and accumulate P(t) = A× B + P(t − 1)
A, B are n-bit values and P a m-bit with m >> n (e.g.,
16× 16 + 40 −→ 40 in some DSPs)
FMA: fused multiply and add P = A× B + C where A,B,C and P can be
stored in different registers (recent general purpose processors, e.g.,
Itanium)

BA

P

C

clkset

assimilation

reg

generation
reduction

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 67/104

Squarer

1 ADD(9 bits)

3 FA + 2 HA

a0 a0

a5 a5

a5

a5 a4

a4

a3

a3 a2

a2 a1

a1

a0

a0

a0

a5

a4

a2

a3

a4a3

a2 a5

a5

a4

a3

a4

a3 a5

a5

a4

a3

a2

a1

a2

a3

a4

a1 a5

a4

a3

a2

a1

a1

a2

a3

a4

a5a0

a5 a0

a3

a2

a1

a0

a1

a2

a3

a4

a4 a0

a2

a1

a0

a1

a2

a3

a3 a0

a1

a0

a1

a2

a2 a0

a0 a1

a1 a0

a5

a4 a5

a4

a1 a0a2 a0a3 a0

a2 a1

a4 a0

a3 a1

a5 a0

a4 a1

a3 a2

a5 a1

a4 a2

a5 a2

a4 a3

a5 a3a5 a4

a5

a4

a3

a2

a1

a4 a0

a3 a1

a5 a0

a4 a1

a3 a2

a5 a1

a4 a2

a5 a2

a4 a3

a5 a3

a2 a1a3 a2

a4 a3

a5 a4a5 a4

a5 a4a5 a4

a0a2 a0a3 a0

a2 a1

a1 a0

a1 a0

a0a2 a0a3 a0

a2 a1

a1 a0

a1 a0

aiai ai=

aiaj ajai aiaj+ = 2

ai

aiaj ai aiaj

aiaj aj

aiaj aiaj

aiaj ai

15 AND + 5 IAND12

1

=

=

=

2 + −

2 + (−)

2 +

+

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 68/104

Multiplication by Constants (1/2)
Problem: substitute a complete multiplier by an optimized sequence of
shifts and additions and/or subtractions

Papers: [2, 1]

Example: p = 111463× x

algo. p = 111463× x = #op.

direct (x � 16)+(x � 15)+(x � 13)+(x � 12)+(x � 9) 10 ±
+(x � 8)+(x � 6)+(x � 5)+(x � 2)+(x � 1)+x

CSD (x � 17)−(x � 14)−(x � 12)+(x � 10) 7 ±
−(x � 7)−(x � 5)+(x � 3)−x

Bernstein (((t2 � 2)+x)� 3)−x 5 ±
where
t1 = (((x � 3)−x)� 2)−x
t2 = t1 � 7+t1

Our (t2 � 12)+(t2 � 5)+t1 4 ±
where
t1 = (x � 3)−x
t2 = (t1 � 2)−x

CSD: canonical signed digit, 111463 = 110110011011001112 = 1001010100101010012

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 69/104

Multiplication by Constants (2/2)

Power savings: 30 up to 60%
operator init. [1] [2] our

DCT 8b 300 94 73 56
DCT 12b 368 100 84 70
DCT 16b 521 129 114 89
DCT 24b 789 212 — 119

Power savings: 10%
operator init. [1] [2] our

8× 8 Had. 56 24 — 24
(16, 11) R.-M. 61 43 31 31
(15, 7) BCH 72 48 47 44

(24, 12, 8) Golay 76 — 47 45

Power savings: up to 40%
operator init. [22] our

8 bits 35 32 24
16 bits 72 70 46

Parks-McClellan filter
remez(25, [0 0.2 0.25 1], [1 1 0 0]).

FIR (1, 5, 5, 1)
DD D

4

4

D D D

4

D D D

4

D

D D D

4

D D

4

E

D

C

B

A

x[t]

x[t]

x[t]

x[t]

x[t]

y[t]

y[t]

y[t]

y[t]

y[t]

z[t]

z’[t]

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 70/104

Part IV

More advanced operations

Division (square root)

Elementary Functions

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 71/104

Division Not an Important Operation? Not So Clear!

Technical report3 from S. Oberman and M. Flynn : “Design issues in
floating-point division”, CSL-TR-94-647 Stanford University.

 0

 10

 20

 30

 40

 50

div mul add sub abs movcvtd neg cvtw / + *
 0

 10

 20

 30

 40

 50

T
im

e
 U

s
a
g
e
 [
%

]

Distribution for instructions and computation time in FP units

3%

36%

24%

13%

2%

11%

7%

1%
3%

40%
42%

18%

instructions units

3SPECfp92 DECstation MIPS R3000 (latency : 2c add, 5c mul, 19c div), compil. O3.
A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 72/104

Restoring Division

1 f o r i from 1 to n do
2 x ←− 2x
3 x ←− x − d
4 i f x ≥ 0 then
5 qi ←− 1
6 e l s e
7 qi ←− 0
8 x ←− x + d

x

d

MSB

10

SHR

clk

init
1 0

Reg

qi

b a

a−b

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 73/104

How to Speed-Up Division ?

Idea : high radix iterations

Problem: accurate comparisons with
divisor multiples

zones de choix difficile

x(i)

x(i+1)

d

0
0 d

2 310

x(i+1)

x(i)

−2 −1 0 1 2

zones à choix multiples

Solution: redundant representation
for quotient digits

↪→ approximate comparisons

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 74/104

SRT Division Architecture

SRT: Sweeney, Robertson and Tocher, 1958
x

MSB

MSB

d

10

k x k d

SHR

init

clk

2n n

n

n
2n

2n

2n

k

Reg

qi

T

conv

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 75/104

SRT Division Table

Diagram remainder-divisor :

• radix β = 4

• qi ∈ {−2,−1, 0, 1, 2}

• input :

I d on 3 bits
I x on 5 bits

Remark : symmetric diagram
(w.r.t. d axis)

00.0

00.1

01.0

10.1

10.0

11.0

11.1

0.100 0.101 0.110 0.111

01.1

0

2

1

zone impossible

2d/3

4d/3

5d/3

8d/3

d/3

x

d

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 76/104

Micro-Coded Division using Newton-Raphson

Specific iteration with quadratic convergence to 1/x :

xi+1 = xi · (2− d · xi)

Then, use d · (1/x) (and a few op. for rounding if needed)

Motivation: simplified processor architecture

reg.
file

FU1 FU2 FU3LSU

m
em

or
y

h
ie

ra
rc

h
y

D

instructions management + control
I

@
@

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 77/104

The Return of SRT Dividers in Processors. . .
Problems in Newton-Raphson iterations: power consumption and thermal
hot-spot!

Source: W. Liu and A. Nannarelli. Power Dissipation Challenges in Multicore

Floating-Point Units. Proc. ASAP 2010.

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 78/104

Divgen: a Division Unit Generator

• VHDL output

• supported algorithms: restoring, non-restoring and SRT

• partial remainder: 2’s complement or carry-save

• # guard bits, SRT table folding, gray encoding

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35

C
irc

ui
t a

re
a

[#
sl

ic
es

]

Quotient size [#bits]

Restoring
Nonestoring

SRT−2−1
SRT−4−2
SRT−4−3
SRT−8−4
SRT−8−7

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30 35

T
ot

al
 ti

m
e

[n
s]

quotient size [#bits]

Restoring
Nonestoring

SRT−2−1
SRT−4−2
SRT−4−3
SRT−8−4
SRT−8−7

Publi. [5], web: http://lipforge.ens-lyon.fr/www/divgen/

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 79/104

Motivations for More Advanced Operations

x

y

C

θ

P

P ′
P ′ = R(P,C , θ)(

x ′

y ′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)

Initial approximations for
floating-point units:

• reciprocal 1
x for

division

• inverse square root
1√
x

for square root x

f (x)

0.5

1

1 2

1
x

1√
x

and many other functions: exp(x), log(x), arctan(x), cosh(x), . . .

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 80/104

http://lipforge.ens-lyon.fr/www/divgen/

Error and Accuracy
Question: how many bits are correct ?

xt = (1.000 000 00)2 theoretical value

xc = (0.111 111 11)2 value in the circuit

|xt − xc| = (0.000 000 01)2 = 2−8

Error, ε: distance between 2 objects (e.g. ε = ||f (x)− p(x)||)

Accuracy, µ: (fractional) number of bits required to represent values with
an error ≤ ε

µ = − log2 |ε|

Notation: µ expressed in terms of correct or significant bits ([cb], [sb])

Example: error ε = 0.0000107 is equivalent to accuracy µ = 16.5 sb

ε

µ [sb]

2−12

12

2−11

11

2−10

10

2−9

9

2−8

8

2−7

7

2−6

6

2−5

5

2−4

4

2−3

3

2−2

2

2−1

1

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 81/104

Polynomial Approximations

x

f (x)

a b

a′

b′

f

x
ε(x)

p

ε

p

ε

operator

x x argument

[a, b] domain

f (x)
f function

p(x) ≈ f (x)
p polynomial

ε(x) = f (x)− p(x) ε approx. error

ε(x) ≤ εtarget εtarget maximum
allowed error

Question: what is the best p?

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 82/104

Accuracy, Degree and Evaluation Cost

Degree-d minimax approximation polynomials to sin(x) with x ∈ [a, b]:

d

µ [sb]

4

8

12

16

20

24

1 2 3 4 5 0 π
4

π
2

π 2π

[a, b]

• higher accuracy =⇒ higher degree

• higher degree =⇒ more costly evaluation

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 83/104

Polynomial Evaluation Schemes

scheme computations # ± # ×

direct p0 + p1x + p2x2 + p3x3 3 5

Horner p0 +
(
p1 + (p2 + p3x)x

)
x 3 3

Estrin p0 + p1x + (p2 + p3x)x2 3 4

Trade-off:

• direct scheme −→ high operation cost and smaller accuracy

• Horner scheme −→ smallest cost but sequential

• Estrin scheme −→ some internal parallelism

Question: what is the best evaluation scheme?

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 84/104

Round-off Errors

Round-off errors occur during most of computations:

• due to the finite accuracy during the computations

• small for a single operation (fraction of the LSB)

• accumulation of such errors may be a problem in long computation
sequences

• need for a sufficient data-path width in order to limit round-off errors

Examples: 1/3 = 0.33333333 . . .→ 0.3333 or 0.3334 in 1Q104 format

+ ×

Question: what is the best data-path width?

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 85/104

Bounding Round-off Errors

Problem: it is very difficult to get tight bounds

Solutions:

• worst case: assume 1/2 LSB error for each operation
 simple but very pessimistic

• qualification: exhaustive or selected simulations
 simple but only validated bounds for small systems

• specific tools: formal accurate analysis (and proof)
 we use gappa developed by Guillaume Melquiond

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 86/104

Gappa Overview

• developed by Guillaume Melquiond

• goal: formal verification of the correctness of numerical programs:
I software and hardware
I integer, floating-point and fixed-point arithmetic (±, ×, ÷,

√
)

• uses multiple-precision interval arithmetic, forward error analysis and
expression rewriting to bound mathematical expressions (rounded and
exact operators)

• generates a theorem and its proof which can be automatically checked
using a proof assistant (e.g. Coq or HOL Light)

• reports tight error bounds for given expressions in a given domain

• C++ code and free software license (CeCILL ' GPL)

• publication: ACM Transactions on Mathematical Software, n. 1, vol.
37, 2010, pp: 2:1–20, doi: 10.1145/1644001.1644003

• source code and doc: http://gappa.gforge.inria.fr/

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 87/104

Gappa Example
Degree-2 polynomial approximation to ex over [1/2, 1] and format 1Q9:

1 p0 = 571/512; p1 = 275/512; p2 = 545/512;
2

3 x = f i x e d<−9,dn>(Mx) ;
4

5 y1 f i x e d<−9,dn>= p2 ∗ x + p1 ;
6 p f i x e d<−9,dn>= y1 ∗ x + p0 ;
7

8Mp = (p2 ∗ Mx + p1) ∗ Mx + p0 ;
9

10 {
11 Mx i n [0 . 5 , 1] /\ |Mp−Mf | i n [0 , 0 . 0 0 1385]
12−>
13 | p−Mf | i n ?
14 }

Gappa-0.14.0 result ([a, b], x{(≈ x)10, log2 x}, xby = x2y):

Results for Mx in [0.5, 1] and |Mp - Mf| in [0, 0.001385]:

|p - Mf| in [0, 193518932894171697b-64 {0.0104907, 2^(-6.57475)}]

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 88/104

http://gappa.gforge.inria.fr/

Minimax Polynomial Approximations

• approximation error εapp = ||f − p||∞ = maxa≤x≤b|f (x)− p(x)|

• minimax polynomial approximation to f over [a, b] is p∗ such that:

||f − p∗||∞ = minp∈Pd
||f − p||∞

• Pd set of polynomials with real coefficients and degree ≤ d

• p∗ computed using an algorithm from Remez (numerically
implemented in Maple, Matlab, sollya. . .)

Problems:

• p∗ coefficients in R =⇒ conversion to finite precision

• during p∗ evaluation, some round-off errors add up to εapp

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 89/104

Finite Precision Coefficients Selection Problem

Example: f (x) = ex over [1/2, 1] with d = 2, the remez function from
sollya gives:

p∗ = 1.116019297 . . .+ 0.535470348 . . .× x + 1.065407185 . . .× x2

Question: what are “good” representable values for p0, p1 and p2?

Problem: p∗ is the best theoretical approximation to f (i.e. pi ∈ R)

Need: find good approximations with “machine-representable” coefficients

Above example with 1Q9 format (all values for domain [1/2, 1]):

• εapp = ||f − p∗||∞ ' 1.385× 10−3 ' 9.4 sb

• 571
512 + 137

256 x + 545
512 x2 8.1 sb (∀i use N (pi))

• 571
512 + 275

512 x + 545
512 x2 9.3 sb (best selection)

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 90/104

Basic Coefficient Selection Method

Idea: search among all the rounding modes for all the p∗i
• round up pi = 4(p∗i), round down pi = 5(p∗i)

• 2 values per coeff. =⇒ total of 2d+1 values (but d is small)

• for each polynomial p evaluate εapp = ||f − p||∞, then select
polynomial(s) with the smallest εapp

5(p0)

5(p1)

5(p2) 4(p2)

4(p1)

5(p2) 4(p2)

4(p0)

5(p1)

5(p2) 4(p2)

4(p1)

5(p2) 4(p2)

h
eig

h
t
=

d
+

1

εapp

Result: p(x) =
∑d

i=0 pi x
i where all pi are representable in target format

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 91/104

Example for f (x) = 2x , x ∈ [0, 1] and d = 4

εapp(p∗) 18.04 sb

p εapp(p) p εapp(p)

(5,5,5,5,5) 12.00 (5,5,5,5,4) 13.00
(5,5,5,4,5) 13.00 (5,5,5,4,4) 14.03
(5,5,4,5,5) 13.00 (5,5,4,5,4) 14.55
(5,5,4,4,5) 14.99 (5,5,4,4,4) 13.00
(5,4,5,5,5) 13.00 (5,4,5,5,4) 16.13
(5,4,5,4,5) 17.12 (5,4,5,4,4) 13.00
(5,4,4,5,5) 15.71 (5,4,4,5,4) 13.00
(5,4,4,4,5) 13.00 (5,4,4,4,4) 12.00
(4,5,5,5,5) 13.00 (4,5,5,5,4) 13.00
(4,5,5,4,5) 13.00 (4,5,5,4,4) 13.00
(4,5,4,5,5) 13.00 (4,5,4,5,4) 13.00
(4,5,4,4,5) 12.99 (4,5,4,4,4) 12.00
(4,4,5,5,5) 12.99 (4,4,5,5,4) 12.98
(4,4,5,4,5) 12.91 (4,4,5,4,4) 12.00
(4,4,4,5,5) 12.79 (4,4,4,5,4) 12.00
(4,4,4,4,5) 12.00 (4,4,4,4,4) 11.41

p represented by (p0, p1, p2, p3, p4)

εapp [sb]

0

2

4

6

8

10

12

14

16

18

20

d = 4

d = 3

d = 2

d = 1

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 92/104

Improved Coefficient Selection Methods

p0

5 4

p1

5
4

p2

Other selection methods:

• linear programming methods, e.g. meplib software
https://lipforge.ens-lyon.fr/projects/meplib/

• euclidean lattices reduction (LLL), e.g. sollya software
http://sollya.gforge.inria.fr/

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 93/104

Example:
√
x over [1, 2] and µ ≤ 8 sb

Selection of coefficients leading to sparse recodings

p∗ = 1.00076383 + 0.48388463x − 0.071198745x2

p = 1 + (0.100001)2x − (0.0001001)2x2

replace × by a small number of ±

×

x

1 6 4 7
1

+

+ + − − −

p

solution area period #cycles latency power

wo. tools 1.00 1.00 2 1.00 1.00

w. tools 0.59 0.97 1 0.48 0.45

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 94/104

Part V

Conclusion & references

Conclusion

References

Good Books

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 95/104

Conclusion

When designing arithmetic operators for low-power applications:

• use adequate number system(s)

• use adequate algorithm(s)

• use specific operator(s) when possible

• use optimization (open-source) tool(s):
I floating-point data-paths: FloPoCo flopoco.gforge.inria.fr

I divider generator: divgen
http://lipforge.ens-lyon.fr/www/divgen/

I polynomial approx.: sollya http://sollya.gforge.inria.fr/

I rounding errors: gappa http://gappa.gforge.inria.fr/

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 96/104

https://lipforge.ens-lyon.fr/projects/meplib/
http://sollya.gforge.inria.fr/
flopoco.gforge.inria.fr
http://lipforge.ens-lyon.fr/www/divgen/
http://sollya.gforge.inria.fr/
http://gappa.gforge.inria.fr/

Take Care to Not So Good Ideas. . .

Gaston 14. La sage des gaffes. Page 5. Par Franquin.

Dupuis, 1982 (réédition 1993). ISBN 2-8001-0955-6

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 97/104

Arithmetic Operators for Circuits in 20 Years ???

Fluide Glacial
Numéro HS 46
(20/04/2009)
Où serons nous en 2040 ?
Couverture de Goossens

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 98/104

References I

N. Boullis and A. Tisserand.
Some optimizations of hardware multiplication by constant matrices.
In J.-C. Bajard and M. Schulte, editors, Proc. 16th Symposium on Computer Arithmetic
(ARITH), pages 20–27, Santiago de Compostela, Spain, June 2003. IEEE Computer Society.

N. Boullis and A. Tisserand.
Some optimizations of hardware multiplication by constant matrices.
IEEE Transactions on Computers, 54(10):1271–1282, October 2005.

H. T. Bui, Y. Wang, and Y. Jiang.
Design and analysis of low-power 10-transistor full adders using novel XOR-XNOR gates.
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,
49(1):25–30, January 2002.

L. Dadda.
Some schemes for parallel multipliers.
Alta Frequenza, 34:349–356, 1965.

R. Michard, A. Tisserand, and N. Veyrat-Charvillon.
Divgen: a divider unit generator.
In F. T. Luk, editor, Proc. Advanced Signal Processing Algorithms, Architectures and
Implementations XV, volume 5910, pages 1–12, San Diego, California, U.S.A., August 2005.
SPIE.

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 99/104

References II

A. Tisserand.
Low-power arithmetic operators.
In C. Piguet, editor, Low Power Electronics Design, chapter 9. CRC Press, November 2004.

A. Tisserand.
Introduction aux représentations des nombres et opérateurs arithmétiques à basse
consommation d’énergie.
Technique et Science Informatiques, 26(5):639–646, May 2007.

A. Tisserand.
Unités de calcul flottant.
Cours École Thématique ARCHI07, March 2007.

A. Tisserand.
Power analysis and cryptosystem security: Attacks and countermeasures.
Cours École Thématique ECOFAC 2012, May 2012.

C.S. Wallace.
A suggestion for a fast multiplier.
IEEE Transactions on Electronic Computers, EC-13:14–17, 1964.

R. Zimmermann.
Binary Adder Architectures for Cell-Based VLSI and their Synthesis.
Phd thesis, Swiss Federal Institute of Technology Zurich, 1998.

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 100/104

Good Books

CMOS VLSI Design

A Circuits and Systems Perspective

Neil Weste and David Harris

3rd edition, 2004

Addison Wesley

ISBN: 0–321–14901–7

Micro et nano-électronique

Bases, Composants, Circuits

Hervé Fanet

2006

Dunod

ISBN: 2–10–049141–5

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 101/104

Good Books

Digital Arithmetic

Milos Ercegovac and Tomas Lang

2003

Morgan Kaufmann

ISBN: 1–55860–798–6

Arithmétique des ordinateurs

Jean-Michel Muller

1989

Masson

ISBN: 2–225–81689–1

(web version)

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 102/104

Good Books

L’Énergie à découvert

Sous la direction de R. Mosseri et C. Jeandel

2013

CNRS Éditions

ISBN: 978-2-271-07678-6

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 103/104

The end, questions ?

Contact:

• mailto:arnaud.tisserand@irisa.fr

• http://people.irisa.fr/Arnaud.Tisserand/

• CAIRN Group http://www.irisa.fr/cairn/

• IRISA Laboratory, CNRS–INRIA–Univ. Rennes 1
6 rue Kerampont, CS 80518, F-22305 Lannion cedex, France

Thank you

A. Tisserand, CNRS–IRISA–CAIRN. Low-Power Arithmetic Operators 104/104

mailto:arnaud.tisserand@irisa.fr
http://people.irisa.fr/Arnaud.Tisserand/
http://www.irisa.fr/cairn/

	Introduction
	Motivations
	Power Sources

	Number systems
	Basic Number Systems
	Exotic Number Systems

	Basic operations (over integers)
	Basic Addition
	Fast Addition
	Basic Multiplication
	Fast Multiplication

	More advanced operations
	Division (square root)
	Elementary Functions

	Conclusion & references
	Conclusion
	References
	Good Books

